API Reference
Complete reference for the BlackBox Precision Core SDK API methods and classes.
Explainer
The main class for generating explanations for black-box models.
Constructor
python
Explainer(model, method='shap', background_data=None, **kwargs)Parameters:
model- Your trained ML model (required)method- Explanation method: 'shap' or 'lime' (default: 'shap')background_data- Background dataset for SHAP (optional)
explain()
Generate explanations for input data.
python
explain(data, feature_names=None, num_features=10)Parameters:
data- Input data to explain (numpy array or pandas DataFrame)feature_names- List of feature names (optional)num_features- Number of top features to show (default: 10)
Returns:
Explanation object with feature importances and visualizations
global_explanation()
Generate global feature importance across the entire dataset.
python
global_explanation(data, feature_names=None)Explanation Object
Object returned by explain() containing explanation results and visualization methods.
Attributes
valuesFeature importance values (numpy array)
feature_namesList of feature names
base_valueModel's base prediction value
Methods
plot()Visualize feature importances
to_dict()Export explanation as dictionary
save(filename)Save explanation to file
Complete Example
python
from blackbox_core import Explainer
import numpy as np
from sklearn.ensemble import RandomForestClassifier
# Train a model
X_train = np.random.rand(100, 10)
y_train = np.random.randint(0, 2, 100)
model = RandomForestClassifier()
model.fit(X_train, y_train)
# Initialize explainer
explainer = Explainer(model, method='shap')
# Get explanation
X_test = np.random.rand(1, 10)
explanation = explainer.explain(
X_test,
feature_names=[f'feature_{i}' for i in range(10)]
)
# Visualize
explanation.plot()
# Export
results = explanation.to_dict()